SHRIRAM SPARK

THINK DIFFERENT

Category: CONCEPTS

VFX Technology


download
VFX Technology is a Technology in which imagery is created or manipulated outside the context of a live action shot.
Almost all Hollywood filmmakers and graphics designer uses this technology.In future VFX Technology has lot of scopes.There are lot of software for VFX designing
most of the software are user friendly.
some of common softwares used in VFX are Adobe After affect ,Hitfilm, Autodesk etc.

MULTIPLEXING 7 SEGMENT DISPLAYS WITH ARDUINOAND SHIFT REGISTERS

http://www.instructables.com/files/deriv/FXY/4MFD/HJGE3ZCX/FXY4MFDHJGE3ZCX.LARGE.gif

Mult-Charlieiplex-example.gif
In this instructable, I will be teaching the basics of multiplexing 7 segment displays using an Arduino and a couple of shift registers. This project is well suited for displaying numerical information or if you want to control a bunch of LEDs. For beginners, like me, I had no clue on how to tackle this project. But after trial and error and blood, sweat, and tears, I can say that I have a better understanding of multiplexing and how best to implement it on an Arduino.

First off, what is multiplexing? What about Charlieplexing? Any differences?
Actually, they are they same… Charlieplexing just takes multiplexing to a higher level. Both are techniques used to not only reduce the number of microcontroller pins needed, but also to reduce the power requirements substantially. However, at the cost of time and/or brightness.

In multiplexing, an entire digit or row of LEDs are shown at one time. After some time, the whole digit or row is turned off and the next digit/row is turned on, etc… Simple!

However, Charlieplexing is a bit more complicated in that it goes deeper than multiplexing. Instead of turning on a whole digit or row, a single segment or individual LED is turned on/off. After some time, the segment/LED is turned off and the next segment/individual LED is turned on, etc… After cycling through a digit/row, the process repeats with the next digit/row. So, if you’re charlieplexing a 7-segment, you would consume a max of 20mA vs 160mA in multiplexing since only 1 segment is on at a time. The severe downside is that it takes longer to display information and brightness is reduced because the program needs to cycle through all the 7 segments + decimal or each LED first before moving to the next digit or row. You will also notice a slight flicker as you chain more displays/LEDs.

Look above for a comparison on multiplexing and charlieplexing. Notice how charlieplexing requires more time to display a number?

Before you tackle your multiplexing project, you must lay everything out–research as much as you can. Otherwise, you will end up wasting time, money, and pulling your hair out of frustration.

FIRST 3-D PRINTED SPEAKER

A loudspeaker playing a clip of President Barack Obama talking about 3-D printing in his State of the Union speech might not seem so remarkable—except that the loudspeaker represents one of the first 3-D printed consumer electronic devices in the world.

The 3-D printed loudspeaker is more expensive, took longer to make, and is of a lower quality than a typical mass-produced speaker, said Hod Lipson, an associate professor of mechanical and aerospace engineering at Cornell University. But he described his lab’s demonstration to IEEE Spectrum as providing a “glimpse of the future” by showing that 3-D printing technology can eventually create all the necessary components of electronic devices:

“The real challenge is one of material science: Can we make a series of inks that can serve as conductors, semiconductors, sensors, actuators, and power. These inks have to have good performance and be mutually compatible. We’re not there yet, but I think its well within reach—we’ll see a variety of platforms well within the next 5 years.”

Most 3-D printers usually build objects layer-by-layer from a single “passive” material such as plastic. But researchers have been testing how to use 3-D printing to squirt out conductive inks that can form the building blocks of integrated systems such as electronic devices.

The Cornell project—headed by mechanical engineering graduate students Apoorva Kiran and Robert MacCurdy—used two of the lab’s homegrown Fab@Home printers to create the 3-D printed loudspeaker parts. One printer made the plastic cone and base of the loudspeaker. The second printer laid down the wires on the cone and created a magnet inside the plastic base. (The team swapped out the second printer’s ink cartridge from conductor to magnet ink between printing runs.)

Silver ink provided the conductive material for the wire. For the magnet, Kiran enlisted the help of Samanvaya Srivastava, a graduate student in chemical and biomolecular engineering, to develop a strontium ferrite blend. Two Cornell undergraduates, Jeremy Blum and Elise Yang, also worked on the project.

The 3-D printed loudspeaker didn’t come out all in one piece—researchers manually moved the parts between the two printers and then snapped the cone and base together to complete the device. But Lipson says the complete loudspeaker could be printed on a single 3-D printer if the printer had multiple deposition tools capable of squirting out the different materials needed for the plastic, wires and magnet. Such printers could already be developed within labs in a month or so from a technical standpoint, but thebusiness demand is not there yet with 3-D printed electronics still in their infancy.

Lipson previously worked with former Cornell graduate students, Evan Malone and Matthew Alonso, to create a 3-D printed version of a working telegraph modeled on the Vail Register—the famous machine that Samuel Morse and Alfred Vail used to send the first Morse code telegraph in 1844. By comparison, the 3-D printed loudspeaker represents a relatively modern example of a commercial electronic device.

Once 3-D printing gets the hang of making electromagnetic systems, the technology could open the door for new customizable shapes and optimized performance for specific electronic devices—features that mass manufacturing can’t offer. Lipson described the idea of creating 3-D printed headsets, microphones, and other devices custom-made.

Eventually, 3-D printing could also revolutionize the manufacturing of robots. Lipson’s lab envisions using 3-D printers to build robots with “embedded wires and batteries shaped like limbs,” as well as all the other necessary components of robotic technology.

“We hope to be able to develop working electromagnetic motors in the future which would be the cornerstone upon which printed robots could be built,” said Robert MacCurdy, one of the Cornell graduate students heading the 3-D printed speaker project.

USB CABLES BUYING GUIDE

One day in 1994, seven world-leading technology companies sat down and created a new standard for connecting computer peripherals. By “one day,” of course I mean, “over the span of several months.” But all technicalities aside, the standard that they laid down became the Universal Serial Bus, or USB for short.

Today, USB is truly a ‘Universal’ standard and you’d be hard-pressed to find an electronic device that doesn’t have a USB port of one kind or another. But how do you know which USB cable will fit your device? Hopefully this buying guide will help you find the cable that you need for your next project.

What Does USB Do?

USB cables replace the huge variety of connectors that used to be standard for computer peripherals: Parallel ports, DB9 Serial, keyboard and mouse ports, joystick and midi ports… Really, it was getting out of hand. USB simplifies the process of installing and replacing hardware by making all communications adhere to a serial standard which takes place on a twisted pair data cable and identifies the device that’s connected. When you add the power and ground connections, you’re left with a simple 4-conductor cable that’s inexpensive to make and easy to stow.

500px-USB_half Continue reading

VARIABLE POWER SUPPLY USING LM 317 VOLTAGE CONTROLLER

We had earlier in 2 different posts discussed about a variable power supply using LM 317. But in this post we discuss clearly about the working and designing of the LM 317 power supply in detailed.

Block Diagram

This circuit, like all voltage regulators  must  follow the same general block diagram

Block-Diagram-of-Power-Supply

Here, we have got an input high voltage AC going into a transformer which usually steps down the high voltage AC from mains to low voltage AC required for our application. The following bridge rectifier and a smoothing capacitor to convert AC voltage into unregulated DC voltage. But this voltage will change according to varying load and input stability. This unregulated DC voltage is fed into a voltage regulator which will keep a constant output voltage and suppresses unregulated voltage ripples. Now this voltage can be fed into our load.

Firstly let us discuss about the need for the smoothing capacitance.As you know  the out put of the bridge rectifier will be as follows

Output-of-Brige-Rectifier

As you can see, although the waveform can be considered to be a DC voltage since the output polarity does not invert itself, the large ripples Continue reading

AMAZON PROMOTES DRONE DELIVERY

unnamed

In a masterful publicity stunt, Amazon CEO Jeff Bezos announced on 60 Minutes — on the night before Cyber Monday — that his company has been working on a drone service that will deliver items under 5 pounds, and within ten miles of an Amazon fulfillment center, in under 30 minutes..

This is definitely exciting, but exactly how much does Amazon have to accomplish between now and Jeff’s launch goal of 2015? Getting the FAA onboard will be hard enough, but what about actually getting shipments out safely, when that time finally comes? Is this even possible, or simply a publicity stunt by the e-commerce giant? They’re definitely not the first to think about doing this. Matternet has been working on bringing drone-supported shipping to areas of the world where roads aren’t common, or structurally sound enough, to handle everyday deliveries. CEO Andreas Raptopoulos talked about his vision at May’s Hardware Innovation Workshop.

If Amazon is really going for it, here are the main challenges and some of my thoughts on how Amazon will handle them:

BATTERY POWER

Probably the easiest to deal with. Amazon says they’re shooting for 30 minute deliveries, which I’m assuming means 30 minutes from take-off to landing, not order to landing. Jeff says they will deliver to within 10 miles of an Amazon Fulfillment Center, which is doable if the octocopter can go at least 20mph. The challenge here is giving them enough battery power to survive the trip to the customer and back home. Carrying that much weight at that speed for up to an hour is going to require some heavy batteries. Continue reading

PIR SENSOR ARDUINO ALARM

Build a motion-sensing alarm with a PIR sensor and an Arduino microcontroller.

In this simple project, we’ll build a motion-sensing alarm using a PIR (passive infrared) sensor and an Arduino microcontroller. This is a great way to learn the basics of using digital input (from the sensor) and output (in this case, to a noisy buzzer) on your Arduino.

This alarm is handy for booby traps and practical jokes, and it’s just what you’ll need to detect a zombie invasion! Plus, it’s all built on a breadboard, so no soldering required!

Step #1: Gather your parts.

1

 

  • This project requires just a few parts, and because you’re using a solderless breadboard and pre-cut jumper wires, you won’t need any tools at all — except your computer and USB cable to connect the Arduino.

Step #2: Wire the Arduino to the breadboard.

JHRErPeVwx4oQRk6 Continue reading

SIMPLE POWER SUPPLY

7

I bet some of you had the same problem. I was working on this circuit on breadboard and I found out I do not have means to power that circuit. Batteries are too expensive for testing one circuit. In the end I was able to build small power supply that solved my problems.

Many times we can build PSU with small amount of elements. That is the story in this case. I upgraded PSU that already have 12 V output to 9 V with help of linear voltage regulator.

CAUTION : 
Be careful and cautious while proceeding with any project.

Step 1: Parts and materials.

2

Parts:

– PCB
– low voltage connector
– 2 pins connector
– cooling element with nut and bolt and with isolating foil (foil is optional)
– piece of black and red wire and two pins
– 7809 voltage regulator
– 470 uF capacitor and 100 nF capacitor
– PSU with output between 12 and 16 V Continue reading

HOW TO BUILD A SIMPLEST VARIABLE POWER SUPPLY CIRCUIT USING LM317

Whether it’s an electronic novice or an expert professional, a power supply unit is required by everybody in the field. It is the basic source of power that may be required for various electronic procedures, right from powering intricate electronic circuits to the robust electromechanical devices like motors, relays etc.
 
A power supply unit is a must for every electrical and electronic work bench and it’s available in a variety of shapes and sizes in the market and also in the form of schematics to us.
These may be built using discrete components like transistors, resistors etc. or incorporating a single chip for the active functions. No matter what the type may be, a power supply unit should incorporate the following features to become a universal and reliable with its nature:
  • It should be fully and continuously variable with its voltage and current outputs.
  • Variable current feature can be taken as an optional feature because it’s not an absolute requirement with a power supply, unless the usage is in the range of critical evaluations.
  • The voltage produced should be perfectly regulated.

IC 317 Power Supply, Simplest Continue reading

LM317 ADJUSTABLE VOLTAGE REGULATOR

lm317

Every project needs a power supply. As 3.3volt logic replaces 5volt systems, we’re reaching for the LM317 adjustable voltage regulator , rather than the classic 7805 . We’ve found four different hobbyist-friendly packages for different situations.

A simple voltage divider  (R1,R2) sets the LM317 output between 1.25volts and 37volts; use this handy LM317 calculator  to find resistor values. The regulator does its best to maintain 1.25volts on the adjust pin (ADJ), and converts any excess voltage to heat. Not all packages are the same. Choose a part that can supply enough current for your project, but make sure the package has sufficient heat dissipation properties  to burn off the difference between the input and output voltages.

Voltage regulator

Schematic of LM317 in a typical voltage regulator configuration, including decoupling capacitors to address input noise and output transients.

The LM317 has three pins: Input, output, and adjustment. The device is conceptually an op amp (with a relatively high output current capacity). The inverting input of the amp is the adjustment pin, while the non-inverting input is set by an internal bandgap voltage referencewhich produces a stable reference voltage of 1.25V. Continue reading

POWER YOUR BREADBOARD WITH USB

2

think that it is safe to say that most of the people who make (big or small) electronics-projects have a pc or laptop in theire hobbycorner and a lot of projects need 5V for IC’s or microcontrollers. So using power from a USB cable isn’t that farfetched and lets face it: a lot of devices around us use a USB-connection to get their power or to charge their batteries.

 About USB-connectors and power

3 Continue reading

1.25 V TO 37V – 1.5A VARIABLE, ADJUSTABLE POWER SUPPLY USING LM317

A well designed and variable power supply for electronics hobbyists and DIY’ers is a must, you don’t want to spend a huge amount of money in batteries [On the long run]. A variable power supply can come in handy for testing and powering  any project you are building. The mentioned power supply ranges from 1.25V – 37V @ 1.5A using the famous LM317 voltage regulator. LM317T is a very famous IC and easily available in the market comes with 3 pins, supporting input voltage is from 3 volt to 40 volt DC and delivers a stable output between 1.25 volt to 37 volt DC.

THREE REASONS TO TAKE DIY TO THE NEXT LEVEL

Whether you are watching it on television or searching for it on Pinterest, chances are you have admired a few Do It Yourself (DIY) projects recently. Have you taken it a step further and actually completed a DIY project? There are three key reasons why the trend of DIY projects is so popular.

Fun

The first reason that people want to try a DIY project is usually because it sounds like fun. You learn a new skill and the end result will be just what you are looking for. Since Halloween is just around the corner you may be thinking: “Should I go searching for the perfect costume or should I try to design and sew it myself?” Not everyone would have an interest and natural ability in making their own costume so learning to sew would seem like fun. Chances are you are artistic and enjoy ways to tangibly express that creativity. Now imagine taking it one step further and Continue reading

SOUND GIVES OBJECTS A HUMAN TOUCH

1

Touch screens are so ubiquitous that physical keyboards are becoming a thing of the past, at least for mobile devices. Now imagine if the capability of touch spread from the display to the entire device, allowing control by gently pressing on any part of the phone, or even making any household item into a touch-sensitive interface with your computer.

Anything solid vibrates a specific way when it’s hit physically with another object or with sound waves. The characteristic is called resonance. For example, when you tap on a crystal glass, it vibrates at a certain frequency, producing a ring. If you hit it with sound waves — for example, the ambient background noise in a room — it vibrates at a different frequency. Grip the glass while it rings, and the sound stops. Continue reading

SMART SMOKE ALARM

For a device created to save lives, the household smoke detector sure takes a lot of heat for being annoying: the false alarms when the cookies get burned, the incessant beeping when the battery needs changing and all those times standing on wobbly chairs while trying to find minuscule buttons.

dnews-files-2013-10-nest-smoke-alarm-gallery-670-jpg Continue reading

POWER AND THERMAL DISSIPATION

As your embedded project grows in scope and complexity, power consumption becomes an ever more apparent issue. As power consumption increases, components like linear voltage regulators can heat up during normal operation. Some heat is okay, however when things get too hot, the performance of the linear regulator suffers.

How much is too much?

A good rule of thumb for voltage regulators is if the outer case becomes uncomfortable to the touch, then the part needs to have an efficient way to transfer the heat to another medium. A good way to do this is to add a heat sink as shown below.

breadboard Continue reading

FLEXIFORCE PRESSURE SENSOR – QUICK START GUIDE

Introduction

This is a quick how-to explaining everything you need to get started using your Flexiforce Pressure Sensor.  This example uses the 25lb version, but the concepts learned apply to all the Flex sensors.

50eb248dce395f941f000000

Requirements

Necessary hardware to follow this guide:

  • Arduino UNO or other Arduino compatible board
  • Flexiforce Pressure Sensor
  • Breadboard
  • M/M Jumper Wires
  • 1 MegaOhm Resistor  Continue reading

WHY SHOULD YOU DE-RATE CAPACITORS

Capacitors Galore

Capacitors are one of the most common elements found in electronics, and they come in a variety of shapes, sizes, and values. There are also many different methods to manufacture a capacitor. As a result, capacitors have a wide array of properties that make some capacitor types better for specific situations. I would like to take three of the most common capacitors – ceramic, electrolytic, and tantalum – and examine their abilities to handle reverse and over-voltage situations. Note: several capacitors were harmed in the making of this post.

525434e5757b7f6b248b4570

Ceramic Capacitors

The most common capacitor is the multi-layer ceramic capacitor (MLCC). These are found on almost every piece of electronics, often in small, surface-mount variants. Ceramic capacitors are produced from alternating laye Continue reading

UNDERSTANDING POWER FACTOR AND WHY IT'S IMPORTANT

Power factor is a measure of how effectively you are using electricity. Various types of power are at work to provide us with electrical energy. Here is what each one is doing.

Working Power – the “true” or “real” power used in all electrical appliances to perform the work of heating, lighting, motion, etc. We express this as kW or kilowatts. Common types of resistive loads are electric heating and lighting.

An inductive load, like a motor, compressor or ballast, also requires Reactive Power to generate and sustain a magnetic field in order to operate. We call this non-working power kVAR’s, or kilovolt-amperes-reactive.

Every home and business has both resistive and inductive loads. The ratio between these two types of loads becomes important as you add more inductive equipment. Working power and reactive power make up Apparent Power, which is called kVA, kilovolt-amperes. We determine apparent power using the formula, kVA2 = kV*A.

Going one step further, Power Factor (PF) is the ratio of working power to apparent power, or the formula PF = kW / kVA. A high PF benefits both the customer and utility, while a low PF indicates poor utilization of electrical power.  Continue reading

RFID TECHNOLOGY

Radio-Frequency Identification (RFID) is technology that allows machines to identify an object without touching it, even without a clear line of sight. Furthermore, this technology can be used to identify several objects simultaneously. RFID can be found everywhere these days – anything from your cat to your car contains RFID technology. This post will cover how RFID works, some practical uses, and maybe even some example code for reading RFID data.

52564176757b7f89488b4567

 

What is RFID?

RFID is a sort of umbrella term used to describe technology that uses radio waves to communicate. Generally, the data stored is in the form of a serial number. Many RFID tags, contain a 32-bit hexadecimal number. At its heart, the RFID card contains an antenna attached to a microchip. When the chip is properly powered, it transmits the serial number through the antenna, which is then read and decoded. Continue reading

HOW IC 555 TIMER WORKS? – DETAILED WALKTHROUGH

Pin-wise functioning of IC555 timer

Pin-1, GROUND: It is the GROUND PIN of the IC. The negative terminal of DC power supply or battery is connected to this pin. Here note that IC555 works always on single rail power supply and NEVER on dual power supply, unlike operational amplifiers.

Also note that this pin should be connected directly to ground and NOT through any resistor or capacitor. If done so, the IC will not function properly and may heat up and get damaged. This happens because all the semiconductor blocks inside the IC will be raised by certain amount of stray voltage and will damage the IC. Refer the block diagram of the IC for more details. For more details read elaborate collection of FAQ on this IC.

image_thumb40_thumb

Pin-2, TRIGGER It is known as TRIGGER PIN. As the name suggests in triggers i.e. starts the timing cycle of the IC. It is connected to the inverting input terminal of  trigger comparator inside the IC. As this pin is connected to inverting input terminal, it accepts negative voltage pulse to trigger the timing cycle. So it triggers when the voltage at this pin LESS THAN 1/3 of the supply voltage (Vcc). Continue reading

PULSE WIDTH MODULATION [PWM]

Pulse width modulation is a fancy term for describing a type of digital signal. Pulse width modulation is used in a variety of applications including sophisticated control circuitry. A common way we use them is to control dimming of RGB LEDs or to control the direction of a servo motor. We can accomplish a range of results in both applications because pulse width modulation allows us to vary how much time the signal is high in an analog fashion. While the signal can only be high (usually 5V) or low (ground) at any time, we can change the proportion of time the signal is high compared to when it is low over a consistent time interval.

512e85a6ce395f4d64000000

Robotic claw controlled by a servo motor using Pulse Width Modulation

Duty Cycle

When the signal is high, we call this “on time”. To describe the amount of “on time” , we use the concept of duty cycle. Duty cycle is measured in percentage. The percentage duty cycle specifically describes the percentage of time a digital signal is on over an interval or period of time. This period is the inverse of the frequency of the waveform.

If a digital signal spends half of the time on and the other half off, we would say the digital signal has a duty cycle of 50% and resembles an ideal square wave. If the percentage is higher than 50%, the digital signal spends more time in the high state than the low state and vice versa if the duty cycle is less than 50%. Here is a graph that illustrates these three scenarios:

512e869bce395fbc64000002 Continue reading

© 2017 SHRIRAM SPARK

Theme by Anders NorenUp ↑