VFX Technology


VFX Technology is a Technology in which imagery is created or manipulated outside the context of a live action shot.
Almost all Hollywood filmmakers and graphics designer uses this technology.In future VFX Technology has lot of scopes.There are lot of software for VFX designing
most of the software are user friendly.
some of common softwares used in VFX are Adobe After affect ,Hitfilm, Autodesk etc.


Technology moves at breakneck speed, and we now have more power in our pockets than we had in our homes in the 1990s. Artificial intelligence (AI) has been a fascinating concept of science fiction for decades, but many researchers think we’re finally getting close to making AI a reality. NPR notes that in the last few years, scientists have made breakthroughs in “machine learning,” using neural networks, which mimic the processes of real neurons.

This is a type of “deep learning” that allows machines to process information for themselves on a very sophisticated level, allowing them to perform complex functions like facial recognition. Big data is speeding up the AI development process, and we may be seeing more integration of AI technology in our everyday lives relatively soon. While much of this technology is still fairly rudimentary at the moment, we can expect sophisticated AI to one day significantly impact our everyday lives. Here are 6 ways AI might affect us in the future.

1. Automated Transportation

We’re already seeing the beginnings of self-driving cars, though the vehicles are currently required to have a driver present at the wheel for safety. Despite these exciting developments, the technology isn’t perfect yet, and it will take a while for public acceptance to bring automated cars into widespread use. Google began testing a self-driving car in 2012, and since then, the U.S. Department of Transportation has released definitions of different levels of automation, with Google’s car classified as the first level down from full automation. Other transportation methods are closer to full automation, such as buses and trains.

2. Cyborg Technology

One of the main limitations of being human is simply our own bodies—and brains. Researcher Shimon Whiteson thinks that in the future, we will be able to augment ourselves with computers and enhance many of our own natural abilities. Though many of these possible cyborg enhancements would be added for convenience, others might serve a more practical purpose. Yoky Matsuka of Nest believes that AI will become useful for people with amputated limbs, as the brain will be able to communicate with a robotic limb to give the patient more control. This kind of cyborg technology would significantly reduce the limitations that amputees deal with on a daily basis.

3. Taking over dangerous jobs

Robots are already taking over some of the most hazardous jobs available, including bomb defusing. These robots aren’t quite robots yet, according to the BBC. They are technically drones, being used as the physical counterpart for defusing bombs, but requiring a human to control them, rather than using AI. Whatever their classification, they have saved thousands of lives by taking over one of the most dangerous jobs in the world. As technology improves, we will likely see more AI integration to help these machines function.

Other jobs are also being reconsidered for robot integration. Welding, well known for producing toxic substances, intense heat, and earsplitting noise, can now be outsourced to robots in most cases. Robot Worx explains that robotic welding cells are already in use, and have safety features in place to help prevent human workers from fumes and other bodily harm.

4. Solving climate change

Solving climate change might seem like a tall order from a robot, but as Stuart Russell explains, machines have more access to data than one person ever could—storing a mind-boggling number of statistics. Using big data, AI could one day identify trends and use that information to come up with solutions to the world’s biggest problems.

5. Robot as friends

Who wouldn’t want a friend like C-3PO? At this stage, most robots are still emotionless and it’s hard to picture a robot you could relate to. However, a company in Japan has made the first big steps toward a robot companion—one who can understand and feel emotions. Introduced in 2014, “Pepper” the companion robot went on sale in 2015, with all 1,000 initial units selling out within a minute. The robot was programmed to read human emotions, develop its own emotions, and help its human friends stay happy. Pepper goes on sale in the U.S. in 2016, and more sophisticated friendly robots are sure to follow.

6. Improved elder care

For many seniors, everyday life is a struggle, and many have to hire outside help to manage their care, or rely on family members. AI is at a stage where replacing this need isn’t too far off, says Matthew Taylor, computer scientist at Washington State University. “Home” robots could help seniors with everyday tasks and allow them to stay independent and in their homes for as long as possible, which improves their overall well-being.

Although we don’t know the exact future, it is quite evident that interacting with AI will soon become an everyday activity. These interactions will clearly help our society evolve, particularly in regards to automated transportation, cyborgs, handling dangerous duties, solving climate change, friendships and improving the care of our elders. Beyond these six impacts, there are even more ways that AI technology can influence our future, and this very fact has professionals across multiple industries extremely excited for the ever-burgeoning future of artificial intelligence.

Designs on the Future

Mapping out a future for integrated circuits and computing is paramount. One option for advancing chip performance is the use of different materials, Chudzik says. For instance, researchers are experimenting with cobalt to replace tungsten and copper in order to increase the volume of the wires, and studying alternative materials for silicon. These include Ge, SiGE and III-V materials such as gallium arsenide and gallium indium arsenide. However, these materials present performance and scaling challenges and, even if those problems can be addressed, they would produce only incremental gains that would tap out in the not-too-distant future.

Faced with the end of Moore’s Law, researchers are also focusing attention on new and sometimes entirely different approaches. One of the most promising options is stacking components and scaling from today’s 2D ICs to 3D designs, possibly by using nanowires. “By moving into the third dimension and stacking memory and logic, we can create far more function per unit volume,” Rabaey explains. Yet, for now, 3D chip designs also run into challenges, particularly in terms of cooling. The devices have less surface volume as engineers stack components. As a result, “You suddenly have to do processing at a lower temperature or you damage the lower layers,” he notes.

Consequently, a layered 3D design, at least for now, requires a fundamentally different architecture. “Suddenly, in order to gain denser connectivity, the traditional approach of having the memory and processor separated doesn’t make sense. You have to rethink the way you do computation,” Rabaey explains. It’s not an entirely abstract proposition. “The advantages that some applications tap into—particularly machine learning and deep learning, which require dense integration of memory and logic—go away.” Adding to the challenge: a 3D design increases the risk of failures within the chip. “Producing a chip that functions with 100% integrity is impossible. The system must be fail-tolerant and deal with errors,” he adds.

Regardless of the approach and the combination of technologies, researchers are ultimately left with no perfect option. Barring a radical breakthrough, they must rethink the fundamental way in which computing and processing take place.

Conte says two possibilities exist beyond pursuing the current technology direction.

One is to make radical changes, but limit these changes to those that happen “under the covers” in the microarchitecture. In a sense, this is what took place in 1995, except “today we need to use more radical approaches,” he says. For servers and high-performance computing, for example, ultra-low-temperature superconducting is being advanced as one possible solution. At present, the U.S. Intelligence Advanced Research Projects Activity (IARPA) is investing heavily in this approach within its Cryogenic Computing Complexity (C3) program. These non-traditional logic gates are made in small scale, at a size roughly 200 times larger than today’s transistors.

Another is to “bite the bullet and change the programming model,” Conte says. Although numerous ideas and concepts have been forwarded, most center on creating fixed-function (non-programmable) accelerators for critical parts of important programs. “The advantage is that when you remove programmability, you eliminate all the energy consumed in fetching and decoding instructions.” Another possibility—and one that is already taking shape—is to move computation away from the CPU and toward the actual data. Essentially, memory-centric architectures, which are in development in the lab, could muscle up processing without any improvements in chips.

Finally, researchers are exploring completely different ways to compute, including neuromorphic and quantum models that rely on non-Von-Neumann brain-inspired methods and quantum computing. Rabaey says processors are already heading in this direction. As deep learning and cognitive computing emerge, GPU stacks are increasingly used to accelerate performance at the same or lower energy cost as traditional CPUs. Likewise, mobile chips and the Internet of Things bring entirely different processing requirements into play. “In some cases, this changes the paradigm to lower processing requirements on the system but having devices everywhere. We may see billions or trillions of devices that integrate computation and communication with sensing, analytics, and other tasks.”

In fact, as visual processing, big data analytics, cryptography, AR/VR, and other advanced technologies evolve, it is likely researchers will marry various approaches to produce boutique chips that best fit the particular device and situation. Concludes Conte: “The future is rooted in diversity and building devices to meet the needs of the computer architectures that have the most promise.”

The Incredible Shrinking Transistor

The history of semiconductors and Moore’s Law follows a long and somewhat meandering path. Conte, a professor at the schools of computer science and engineering at Georgia Institute of Technology, points out that computing has not always been tied to shrinking transistors. “The phenomenon is only about three decades old,” he points out. Prior to the 1970s, high-performance computers, such as the CRAY-1, were built using discrete emitter-coupled logic-based components. “It wasn’t really until the mid-1980s that the performance and cost of microprocessors started to eclipse these technologies,” he notes.

At that point, engineers developing high-performance systems began to gravitate toward Moore’s Law and adopt a focus on microprocessors. However, the big returns did not last long. By the mid-1990s, “The delays in the wires on-chip outpaced the delays due to transistor speeds,” Conte explains. This created a “wire-delay wall” that engineers circumvented by using parallelism behind the scenes. Simply put: the technology extracted and executed instructions in parallel, but independent, groups. This was known as the “superscalar era,” and the Intel Pentium Pro microprocessor, while not the first system to use this method, demonstrated the success of this approach.

Around the mid-2000s, engineers hit a power wall. Because the power in CMOS transistors is proportional to the operating frequency, when the power density reached 200W/cm2, cooling became imperative. “You can cool the system, but the cost of cooling something hotter than 150 watts resembles a step function, because 150 watts is about the limit for relatively inexpensive forced-air cooling technology,” Conte explains. The bottom line? Energy consumption and performance would not scale in the same way. “We had been hiding the problem from programmers. But now we couldn’t do that with CMOS,” he adds.

No longer could engineers pack more transistors onto a wafer with the same gains. This eventually led to reducing the frequency of the processor core and introducing multicore processors. Still, the problem didn’t go away. As transistors became smaller—hitting approximately 65nm in 2006 —performance and economic gains continued to subside, and as nodes dropped to 22nm and 14nm, the problem grew worse.

What is more, all of this has contributed to fabrication facilities becoming incredibly expensive to build, and semiconductors becoming far more expensive to manufacture. Today, there are only four major semiconductor manufacturers globally: Intel, TSMC, GlobalFoundries, and Samsung. That is down from nearly two dozen two decades ago.

To be sure, the semiconductor industry is approaching the physical limitations of CMOS transistors. Although alternative technologies are now in the research and development stage—including carbon nanotubes and tunneling field effect transistors (TFETs)—there is no evidence these next-gen technologies will actually pay off in a major way. Even if they do usher in further performance gains, they can at best stretch Moore’s Law by a generation or two.

The Future of Semiconductors

Over the last half-century, as computing has advanced by leaps and bounds, one thing has remained fairly static: Moore’s Law.

For more than 50 years, this concept has provided a predictable framework for semiconductor development. It has helped computer manufacturers and many other companies focus their research and plan for the future.

However, there are signs that Moore’s Law is reaching the end of its practical path. Although the IC industry will continue to produce smaller and faster transistors over the next few years, these systems cannot operate at optimal frequencies due to heat dissipation issues. This has “brought the rate of progress in computing performance to a snail’s pace,” wrote IEEE fellows Thomas M. Conte and Paolo A. Gargini in a 2015 IEEE-RC-ITRS report, On the Foundation of the New Computing Industry Beyond 2020.

Yet, the challenges do not stop there. There is also the fact that researchers cannot continually miniaturize chip designs; at some point over the next several years, current two-dimensional ICs will reach a practical size limit. Although researchers are experimenting with new materials and designs—some radically different—there currently is no clear path to progress. In 2015, Gordon Moore predicted the law that bears his name will wither within a decade. The IEEE-RC-ITRS report noted: “A new way of computing is urgently needed.”

As a result, the semiconductor industry is in a state of flux. There is a growing recognition that research and development must incorporate new circuitry designs and rely on entirely different methods to scale up computing power further. “For many years, engineers didn’t have to work all that hard to scale up performance and functionality,” observes Jan Rabaey, professor and EE Division Chair in the Electrical Engineering and Computer Sciences Department at the University of California, Berkeley. “As we reach physical limitations with current technologies, things are about to get a lot more difficult.”


Pioneer UAV Inc.

United States Navy, United States Marine Corps

Sachs SF-350 gasoline engine, 26 horsepower

Max design gross take-off: 416 pounds (188.69 kg).

110 knots

15,000 ft

The RQ-2A represents one of the U.S. Navy’s first unmanned surveillance drones to enter the fleet. Originally designed jointly by the Israeli companies AAI Corp. and Israeli Aircraft Industries, the Navy adapted the original design for shipboard operation deploying from recently-recommissioned battleships in the 1980s. The UAV was later adopted by the Marine Corps for ground-based operations.

The Pioneer UAV system performs a wide variety of reconnaissance, surveillance, target acquisition and battle damage assessment missions. The low radar cross section, low infrared signature and remote control versatility provides a degree of cover for the aircraft. Pioneer provides the tactical commander with real-time images of the battlefield or target.

In the 1980s, U.S. military operations in Grenada, Lebanon, and Libya identified a need for an on-call, inexpensive, unmanned, over-the-horizon targeting, reconnaissance, and battle damage assessment (BDA) capability for local commanders. As a result, in July 1985, the Secretary of the Navy directed the expeditious acquisition of UAV systems for fleet operations using nondevelopmental technology. A competitive fly-off was conducted and two Pioneer systems were procured in December 1985 for testing during 1986. Initial system delivery was made in July 1986 and subsequently deployed on the battleship USS Iowa (BB 61) in December 1986.

During 1987, three additional systems were delivered to the Marine Corps where they were operationally deployed on board LHA-class vessels as well as with several land-based units. Pioneer has operated in many theaters including the Persian Gulf, Bosnia, Yugoslavia and Somalia. Marine Corps Unmanned Aerial Vehicle Squadrons deployed to Iraq in 2003 during Operation Iraqi Freedom and currently support Marine operations in Iraq. The Pioneer is launched using rocket-assisted takeoff or pneumatic rails and is recovered by net at sea or by landing ashore on a 200-by-75-meter unimproved field. The Pioneer carries a payload of 65-100 pounds — including an electro-optical and infrared camera — and can patrol for more than five hours. Control of the RQ-2B can be handed off from control station to control station, thereby increasing the vehicle’s range and allowing launch from one site and recovery at another. With a ManPackable Receiving Station, Pioneer provides portable, payload imagery to forward deployed Marines. Pioneer has flown other payloads including an acoustic-wave vapor sensor and a hyperspectral imagery sensor.

Desert Shield/Storm Anecdote: The surrender of Iraqi troops to an unmanned aerial vehicle did actually happen. All of the UAV units at various times had individuals or groups attempt to signal the Pioneer, possibly to indicate willingness to surrender. However, the most famous incident occurred when USS Missouri (BB 63), using her Pioneer to spot 16 inch gunfire, devastated the defenses of Faylaka Island off the coast near Kuwait City. Shortly thereafter, while still over the horizon and invisible to the defenders, the USS Wisconsin (BB 64) sent her Pioneer over the island at low altitude.

When the UAV came over the island, the defenders heard the obnoxious sound of the two-cycle engine since the air vehicle was intentionally flown low to let the Iraqis know that they were being targeted. Recognizing that with the “vulture” overhead, there would soon be more of those 2,000-pound naval gunfire rounds landing on their positions with the same accuracy, the Iraqis made the right choice and, using handkerchiefs, undershirts, and bedsheets, they signaled their desire to surrender. Imagine the consternation of the Pioneer aircrew who called the commanding officer of Wisconsin and asked plaintively, “Sir, they want to surrender, what should I do with them?”

The RQ-2A Pioneer is operated by four Naval aircraft squadrons: VMU-1 & VMU-2 (USMC) and VC-6 and Training Wing Six (USN). The VC-6 system at Patuxent River Naval Air Station, Maryland, supports software changes, hardware acceptance, test and evaluation of potential payloads and technology developments to meet future UAV requirements. Training Wing Six at Naval Air Station Whiting Field, Florida trains all Navy and Marine Corps Pioneer operators and maintainers.


Best accelerometer buy here

Many different sensory devices are used to determine the position and orientation of an object. The most common of these sensors are the gyroscope and the accelerometer. Though similar in purpose, they measure different things. When combined into a single device, they can create a very powerful array of information.

What is a gyroscope?

A gyroscope is a device that uses Earth’s gravity to help determine orientation. Its design consists of a freely-rotating disk called a rotor, mounted onto a spinning axis in the center of a larger and more stable wheel. As the axis turns, the rotor remains stationary to indicate the central gravitational pull, and thus which way is “down.”

What is an accelerometer?

An accelerometer is a compact device designed to measure non-gravitational acceleration. When the object it’s integrated into goes from a standstill to any velocity, the accelerometer is designed to respond to the vibrations associated with such movement. It uses microscopic crystals that go under stress when vibrations occur, and from that stress a voltage is generated to create a reading on any acceleration. Accelerometers are important components to devices that track fitness and other measurements in the quantified self movement. Continue reading


A loudspeaker playing a clip of President Barack Obama talking about 3-D printing in his State of the Union speech might not seem so remarkable—except that the loudspeaker represents one of the first 3-D printed consumer electronic devices in the world.

The 3-D printed loudspeaker is more expensive, took longer to make, and is of a lower quality than a typical mass-produced speaker, said Hod Lipson, an associate professor of mechanical and aerospace engineering at Cornell University. But he described his lab’s demonstration to IEEE Spectrum as providing a “glimpse of the future” by showing that 3-D printing technology can eventually create all the necessary components of electronic devices:

“The real challenge is one of material science: Can we make a series of inks that can serve as conductors, semiconductors, sensors, actuators, and power. These inks have to have good performance and be mutually compatible. We’re not there yet, but I think its well within reach—we’ll see a variety of platforms well within the next 5 years.”

Most 3-D printers usually build objects layer-by-layer from a single “passive” material such as plastic. But researchers have been testing how to use 3-D printing to squirt out conductive inks that can form the building blocks of integrated systems such as electronic devices.

The Cornell project—headed by mechanical engineering graduate students Apoorva Kiran and Robert MacCurdy—used two of the lab’s homegrown Fab@Home printers to create the 3-D printed loudspeaker parts. One printer made the plastic cone and base of the loudspeaker. The second printer laid down the wires on the cone and created a magnet inside the plastic base. (The team swapped out the second printer’s ink cartridge from conductor to magnet ink between printing runs.)

Silver ink provided the conductive material for the wire. For the magnet, Kiran enlisted the help of Samanvaya Srivastava, a graduate student in chemical and biomolecular engineering, to develop a strontium ferrite blend. Two Cornell undergraduates, Jeremy Blum and Elise Yang, also worked on the project.

The 3-D printed loudspeaker didn’t come out all in one piece—researchers manually moved the parts between the two printers and then snapped the cone and base together to complete the device. But Lipson says the complete loudspeaker could be printed on a single 3-D printer if the printer had multiple deposition tools capable of squirting out the different materials needed for the plastic, wires and magnet. Such printers could already be developed within labs in a month or so from a technical standpoint, but thebusiness demand is not there yet with 3-D printed electronics still in their infancy.

Lipson previously worked with former Cornell graduate students, Evan Malone and Matthew Alonso, to create a 3-D printed version of a working telegraph modeled on the Vail Register—the famous machine that Samuel Morse and Alfred Vail used to send the first Morse code telegraph in 1844. By comparison, the 3-D printed loudspeaker represents a relatively modern example of a commercial electronic device.

Once 3-D printing gets the hang of making electromagnetic systems, the technology could open the door for new customizable shapes and optimized performance for specific electronic devices—features that mass manufacturing can’t offer. Lipson described the idea of creating 3-D printed headsets, microphones, and other devices custom-made.

Eventually, 3-D printing could also revolutionize the manufacturing of robots. Lipson’s lab envisions using 3-D printers to build robots with “embedded wires and batteries shaped like limbs,” as well as all the other necessary components of robotic technology.

“We hope to be able to develop working electromagnetic motors in the future which would be the cornerstone upon which printed robots could be built,” said Robert MacCurdy, one of the Cornell graduate students heading the 3-D printed speaker project.


One day in 1994, seven world-leading technology companies sat down and created a new standard for connecting computer peripherals. By “one day,” of course I mean, “over the span of several months.” But all technicalities aside, the standard that they laid down became the Universal Serial Bus, or USB for short.

Today, USB is truly a ‘Universal’ standard and you’d be hard-pressed to find an electronic device that doesn’t have a USB port of one kind or another. But how do you know which USB cable will fit your device? Hopefully this buying guide will help you find the cable that you need for your next project.

What Does USB Do?

USB cables replace the huge variety of connectors that used to be standard for computer peripherals: Parallel ports, DB9 Serial, keyboard and mouse ports, joystick and midi ports… Really, it was getting out of hand. USB simplifies the process of installing and replacing hardware by making all communications adhere to a serial standard which takes place on a twisted pair data cable and identifies the device that’s connected. When you add the power and ground connections, you’re left with a simple 4-conductor cable that’s inexpensive to make and easy to stow.

500px-USB_half Continue reading


We had earlier in 2 different posts discussed about a variable power supply using LM 317. But in this post we discuss clearly about the working and designing of the LM 317 power supply in detailed.

Block Diagram

This circuit, like all voltage regulators  must  follow the same general block diagram


Here, we have got an input high voltage AC going into a transformer which usually steps down the high voltage AC from mains to low voltage AC required for our application. The following bridge rectifier and a smoothing capacitor to convert AC voltage into unregulated DC voltage. But this voltage will change according to varying load and input stability. This unregulated DC voltage is fed into a voltage regulator which will keep a constant output voltage and suppresses unregulated voltage ripples. Now this voltage can be fed into our load.

Firstly let us discuss about the need for the smoothing capacitance.As you know  the out put of the bridge rectifier will be as follows


As you can see, although the waveform can be considered to be a DC voltage since the output polarity does not invert itself, the large ripples Continue reading



In a masterful publicity stunt, Amazon CEO Jeff Bezos announced on 60 Minutes — on the night before Cyber Monday — that his company has been working on a drone service that will deliver items under 5 pounds, and within ten miles of an Amazon fulfillment center, in under 30 minutes..

This is definitely exciting, but exactly how much does Amazon have to accomplish between now and Jeff’s launch goal of 2015? Getting the FAA onboard will be hard enough, but what about actually getting shipments out safely, when that time finally comes? Is this even possible, or simply a publicity stunt by the e-commerce giant? They’re definitely not the first to think about doing this. Matternet has been working on bringing drone-supported shipping to areas of the world where roads aren’t common, or structurally sound enough, to handle everyday deliveries. CEO Andreas Raptopoulos talked about his vision at May’s Hardware Innovation Workshop.

If Amazon is really going for it, here are the main challenges and some of my thoughts on how Amazon will handle them:


Probably the easiest to deal with. Amazon says they’re shooting for 30 minute deliveries, which I’m assuming means 30 minutes from take-off to landing, not order to landing. Jeff says they will deliver to within 10 miles of an Amazon Fulfillment Center, which is doable if the octocopter can go at least 20mph. The challenge here is giving them enough battery power to survive the trip to the customer and back home. Carrying that much weight at that speed for up to an hour is going to require some heavy batteries. Continue reading


Build a motion-sensing alarm with a PIR sensor and an Arduino microcontroller.

In this simple project, we’ll build a motion-sensing alarm using a PIR (passive infrared) sensor and an Arduino microcontroller. This is a great way to learn the basics of using digital input (from the sensor) and output (in this case, to a noisy buzzer) on your Arduino.

This alarm is handy for booby traps and practical jokes, and it’s just what you’ll need to detect a zombie invasion! Plus, it’s all built on a breadboard, so no soldering required!

Step #1: Gather your parts.



  • This project requires just a few parts, and because you’re using a solderless breadboard and pre-cut jumper wires, you won’t need any tools at all — except your computer and USB cable to connect the Arduino.

Step #2: Wire the Arduino to the breadboard.

JHRErPeVwx4oQRk6 Continue reading



I bet some of you had the same problem. I was working on this circuit on breadboard and I found out I do not have means to power that circuit. Batteries are too expensive for testing one circuit. In the end I was able to build small power supply that solved my problems.

Many times we can build PSU with small amount of elements. That is the story in this case. I upgraded PSU that already have 12 V output to 9 V with help of linear voltage regulator.

Be careful and cautious while proceeding with any project.

Step 1: Parts and materials.



– low voltage connector
– 2 pins connector
– cooling element with nut and bolt and with isolating foil (foil is optional)
– piece of black and red wire and two pins
– 7809 voltage regulator
– 470 uF capacitor and 100 nF capacitor
– PSU with output between 12 and 16 V Continue reading


Whether it’s an electronic novice or an expert professional, a power supply unit is required by everybody in the field. It is the basic source of power that may be required for various electronic procedures, right from powering intricate electronic circuits to the robust electromechanical devices like motors, relays etc.
A power supply unit is a must for every electrical and electronic work bench and it’s available in a variety of shapes and sizes in the market and also in the form of schematics to us.
These may be built using discrete components like transistors, resistors etc. or incorporating a single chip for the active functions. No matter what the type may be, a power supply unit should incorporate the following features to become a universal and reliable with its nature:
  • It should be fully and continuously variable with its voltage and current outputs.
  • Variable current feature can be taken as an optional feature because it’s not an absolute requirement with a power supply, unless the usage is in the range of critical evaluations.
  • The voltage produced should be perfectly regulated.

IC 317 Power Supply, Simplest Continue reading



Every project needs a power supply. As 3.3volt logic replaces 5volt systems, we’re reaching for the LM317 adjustable voltage regulator , rather than the classic 7805 . We’ve found four different hobbyist-friendly packages for different situations.

A simple voltage divider  (R1,R2) sets the LM317 output between 1.25volts and 37volts; use this handy LM317 calculator  to find resistor values. The regulator does its best to maintain 1.25volts on the adjust pin (ADJ), and converts any excess voltage to heat. Not all packages are the same. Choose a part that can supply enough current for your project, but make sure the package has sufficient heat dissipation properties  to burn off the difference between the input and output voltages.

Voltage regulator

Schematic of LM317 in a typical voltage regulator configuration, including decoupling capacitors to address input noise and output transients.

The LM317 has three pins: Input, output, and adjustment. The device is conceptually an op amp (with a relatively high output current capacity). The inverting input of the amp is the adjustment pin, while the non-inverting input is set by an internal bandgap voltage referencewhich produces a stable reference voltage of 1.25V. Continue reading



think that it is safe to say that most of the people who make (big or small) electronics-projects have a pc or laptop in theire hobbycorner and a lot of projects need 5V for IC’s or microcontrollers. So using power from a USB cable isn’t that farfetched and lets face it: a lot of devices around us use a USB-connection to get their power or to charge their batteries.

 About USB-connectors and power

3 Continue reading


A well designed and variable power supply for electronics hobbyists and DIY’ers is a must, you don’t want to spend a huge amount of money in batteries [On the long run]. A variable power supply can come in handy for testing and powering  any project you are building. The mentioned power supply ranges from 1.25V – 37V @ 1.5A using the famous LM317 voltage regulator. LM317T is a very famous IC and easily available in the market comes with 3 pins, supporting input voltage is from 3 volt to 40 volt DC and delivers a stable output between 1.25 volt to 37 volt DC.


Whether you are watching it on television or searching for it on Pinterest, chances are you have admired a few Do It Yourself (DIY) projects recently. Have you taken it a step further and actually completed a DIY project? There are three key reasons why the trend of DIY projects is so popular.


The first reason that people want to try a DIY project is usually because it sounds like fun. You learn a new skill and the end result will be just what you are looking for. Since Halloween is just around the corner you may be thinking: “Should I go searching for the perfect costume or should I try to design and sew it myself?” Not everyone would have an interest and natural ability in making their own costume so learning to sew would seem like fun. Chances are you are artistic and enjoy ways to tangibly express that creativity. Now imagine taking it one step further and Continue reading



Touch screens are so ubiquitous that physical keyboards are becoming a thing of the past, at least for mobile devices. Now imagine if the capability of touch spread from the display to the entire device, allowing control by gently pressing on any part of the phone, or even making any household item into a touch-sensitive interface with your computer.

Anything solid vibrates a specific way when it’s hit physically with another object or with sound waves. The characteristic is called resonance. For example, when you tap on a crystal glass, it vibrates at a certain frequency, producing a ring. If you hit it with sound waves — for example, the ambient background noise in a room — it vibrates at a different frequency. Grip the glass while it rings, and the sound stops. Continue reading


For a device created to save lives, the household smoke detector sure takes a lot of heat for being annoying: the false alarms when the cookies get burned, the incessant beeping when the battery needs changing and all those times standing on wobbly chairs while trying to find minuscule buttons.

dnews-files-2013-10-nest-smoke-alarm-gallery-670-jpg Continue reading


As your embedded project grows in scope and complexity, power consumption becomes an ever more apparent issue. As power consumption increases, components like linear voltage regulators can heat up during normal operation. Some heat is okay, however when things get too hot, the performance of the linear regulator suffers.

How much is too much?

A good rule of thumb for voltage regulators is if the outer case becomes uncomfortable to the touch, then the part needs to have an efficient way to transfer the heat to another medium. A good way to do this is to add a heat sink as shown below.

breadboard Continue reading



This is a quick how-to explaining everything you need to get started using your Flexiforce Pressure Sensor.  This example uses the 25lb version, but the concepts learned apply to all the Flex sensors.



Necessary hardware to follow this guide:

  • Arduino UNO or other Arduino compatible board
  • Flexiforce Pressure Sensor
  • Breadboard
  • M/M Jumper Wires
  • 1 MegaOhm Resistor  Continue reading


Capacitors Galore

Capacitors are one of the most common elements found in electronics, and they come in a variety of shapes, sizes, and values. There are also many different methods to manufacture a capacitor. As a result, capacitors have a wide array of properties that make some capacitor types better for specific situations. I would like to take three of the most common capacitors – ceramic, electrolytic, and tantalum – and examine their abilities to handle reverse and over-voltage situations. Note: several capacitors were harmed in the making of this post.


Ceramic Capacitors

The most common capacitor is the multi-layer ceramic capacitor (MLCC). These are found on almost every piece of electronics, often in small, surface-mount variants. Ceramic capacitors are produced from alternating laye Continue reading


Power factor is a measure of how effectively you are using electricity. Various types of power are at work to provide us with electrical energy. Here is what each one is doing.

Working Power – the “true” or “real” power used in all electrical appliances to perform the work of heating, lighting, motion, etc. We express this as kW or kilowatts. Common types of resistive loads are electric heating and lighting.

An inductive load, like a motor, compressor or ballast, also requires Reactive Power to generate and sustain a magnetic field in order to operate. We call this non-working power kVAR’s, or kilovolt-amperes-reactive.

Every home and business has both resistive and inductive loads. The ratio between these two types of loads becomes important as you add more inductive equipment. Working power and reactive power make up Apparent Power, which is called kVA, kilovolt-amperes. We determine apparent power using the formula, kVA2 = kV*A.

Going one step further, Power Factor (PF) is the ratio of working power to apparent power, or the formula PF = kW / kVA. A high PF benefits both the customer and utility, while a low PF indicates poor utilization of electrical power.  Continue reading


Radio-Frequency Identification (RFID) is technology that allows machines to identify an object without touching it, even without a clear line of sight. Furthermore, this technology can be used to identify several objects simultaneously. RFID can be found everywhere these days – anything from your cat to your car contains RFID technology. This post will cover how RFID works, some practical uses, and maybe even some example code for reading RFID data.



What is RFID?

RFID is a sort of umbrella term used to describe technology that uses radio waves to communicate. Generally, the data stored is in the form of a serial number. Many RFID tags, contain a 32-bit hexadecimal number. At its heart, the RFID card contains an antenna attached to a microchip. When the chip is properly powered, it transmits the serial number through the antenna, which is then read and decoded. Continue reading




When it comes to grafting electronics onto skin, John Rogers from the University of Illinois at Urbana-Champaign churns out epidermic tech at a seemingly fevered pitch. Perhaps his latest creation will make sure he doesn’t overheat.

Along with a team of researchers from the U.S., China, and Singapore, Rogers has designed an extremely pliable patch that, when applied to the skin, can accurately measure skin temperatureand Continue reading



You’re being tracked and not necessarily anonymously. A study last March from researchers at MIT’s Media Lab showed that so-called “anonymized” cell phone data is not so anonymous. The researchers were able to extract specific location information for individuals carrying phones with GPS and location services on. If this concerns you, you might want to keep an eye on New York-based artist and technologist Adam Harvey, who just launched a Kickstarter program to develop phone pockets that shield your phone’s cellular, Wi-Fi, and GPS signals.

According to PopSci, the slip cover is based on the technology behind the electric field-blocking Faraday cage, which protects electrical equipment from lightning strikes. Like the cage, the Off Pocket contains a metal fiber mesh that blocks the wireless signals (frequencies between 800MHz and 2.4 GHz) Continue reading

Solar-Powered Laptop Lasts 10 Hours on a Charge


What if it only took two hours out in the sun supply your laptop with 10 hours of battery life? That’s what the Ubuntu-driven laptop aims to do, according to the folks over at WeWi Telecommunications Inc.

The Sol, a rugged-looking laptop with built-in foldable solar panels, is designed for use in the military, education and developing countries where electricity is scarce. The Canada-based makers behind the Sol claim that the device can run directly off solar energy or can harness the sun’s rays to charge the laptop’s battery in under two hours. Once fully charged, the battery is expected to last between eight and 10 hours.

Packing mid-range specs, the Sol comes with a 1.86GHz dual-core Intel Atom D2500 processor with 2GB of RAM upgradeable to 4GB, a 320GB SATA HDD from Seagate, GMA3600 graphics, a 13.3-inch LCD screen with a 1366 x 768 resolution, and a 3-megapixel camera. It also features a USB 2.0 port, an audio jack, HDMI, Ethernet and SD card ports like most standard laptops. Wi-Fi, GPS and Bluetooth will come built-in to the Sol, and it will be available in 3G and 4G LTE configurations as well. The Sol will run for $350 but you can also snag a waterproof edition for $400, and its slated to launch in Ghana, Africa first. Continue reading

Tick Bot Terminates Those Lil Buggers


What good are ticks? They transmit awful diseases including babesiosis, ehrlichiosis, Rocky Mountain Spotted Fever, Lyme disease and tick paralysis and the critters have been associated with encephalitis. And warmer temps aren’t helping. Insects are cold-blooded, so hot weather makes them more active.

But listen up, ticks. Researchers at the Virginia Military Institute have your number. They’ve built a small rover that mimics a live host to draw you from your hiding places and kill you on contact. Continue reading


Source of EEG activity

The brain’s electrical charge is maintained by billions of neurons. Neurons are electrically charged (or “polarized”) by membrane transport proteins that pump ions across their membranes. Neurons are constantly exchanging ions with the extracellular milieu, for example to maintain resting potential and to propagate action potentials. Ions of similar charge repel each other, and when many ions are pushed out of many neurons at the same time, they can push their neighbours, who push their neighbours, and so on, in a wave. This process is known as volume conduction. When the wave of ions reaches the electrodes on the scalp, they can push or pull electrons on the metal on the electrodes. Since metal conducts the push and pull of electrons easily, the difference in push or pull voltages between any two electrodes can be measured by a voltmeter. Recording these voltages over time gives us the EEG.

The electric potential generated by single neuron is far too small to be picked up by EEG or MEG.EEG activity therefore always reflects the summation of the synchronous activity of thousands or millions of neurons that have similar spatial orientation. If the cells do not have similar spatial orientation, their ions do not line up and create waves to be detected. Pyramidal neurons of the cortex are thought to produce the most EEG signal because they are well-aligned and fire together. Because voltage fields fall off with the square of distance, activity from deep sources is more difficult to detect than currents near the skull.

Scalp EEG activity shows oscillations at a variety of frequencies. Several of these oscillations have characteristic frequency ranges, spatial distributions and are associated with different states of brain functioning (e.g., waking and the various sleep stages). These oscillations represent synchronized activity over a network of neurons. The neuronal networks underlying some of these oscillations are understood (e.g., the thalamocortical resonance underlying sleep spindles), while many others are not (e.g., the system that generates the posterior basic rhythm). Research that measures both EEG and neuron spiking finds the relationship between the two is complex with the power of surface EEG in only two bands (gamma and delta) relating to neuron spike activity.

230px-EEG_cap Continue reading


Sometimes we find new, patented technologies being used in products. at other times, combining common technologies with just a spot of thoughtful design gives rise to a different—and admired—product. Here is a small sample of recent innovations that combine both the categories. take a look at them, and imagine how the engineers would have gone about making them. Perhaps it will spark a new idea in your head!

Compact, wearable GPS tracker

‘i’m Here’ is a cute little GPS tracker that ensures you lose nothing. It is so small that it can be simply put into a bag or suitcase, or worn as a pendant, enabling you to track everything from your handbag to your cat, child or grandmom. Suppose you do not remember where you left your handbag, simply ping the ‘i’m Here’ tracker inside it to immediately get its location in response. Using the desktop or mobile version of ‘i’m Cloud,’ you can see its location on a map too. Apart from pinging the ‘i’m Here’ device, it is also possible to request the location from the ‘i’m Cloud’ panel.



You can also set up the device to get constant updates on its location. You can locate it for free the first200 times. Thereafter, you need to pay a very, very nominal price per ping. The device will be available in India from May 2013, for less than Rs 10,000.

Inside: The device is very small, measuring just 3.7×3.7×1.5 cm3. It has a built-in rechargeable Li-Po 300mAh battery, which can be charged via USB and gives a standby time of two to three days. i’m Here works using a built-in Zeromobile SIM for GSM connectivity. The GPRS module is quad-band 850/900/1800/1900 MHz, multi-slot class 10, mobile station class B and GSM phase 2/2+ compliant. It uses USDD protocol for information exchange. The GPS receiver is a 42-channel, GPS L1 C, A code, high-performance STE engine. GPS functionality is extremely fast, and the time-to-first-fix  just around 30 seconds for cold starts and one second for hot starts.

Storm-warning radios

Alot of equipment work quite well but fail us in emergencies. However, nowadays the trend seems to be in favour of designing equipment for emergencies. We read about SpareOne battery-powered emergency phone in the February issue of EFY, and now here is an emergency clock radio that gives storm warnings and updates.



Eton Corporation’s ZoneGuard+ looks like a simple clock cum radio but whirrs into action when there is a storm ahead. The LED lights turn from green to orange to red depending on the intensity of the emergency, and the warning is broadcast on all the modules. While the package comes with one base station and two wireless modules, you can add any number of modules—even one for every room—to make sure you are always alert.

 ZoneGuard+ features an LCD display, speakers, AM/FM radio, digital tuning, alarm clock and AC/battery power. Specifc-area message encoding (SAME) data from the National Oceanic and Atmospheric Administration, USA, is used for detecting storms. You just need to enter your SAME county code and if there is a warning, watch or advisory, it will be displayed and broadcast on all the modules. You can set up to 25 locations. Wireless modules, which are powered by a pair of AAA-size batteries, work within a range of 50 metres around the base station.

World’s first 3D direct ear scanner 

Lantos 3D digital ear scanner is apparently the world’s first inra-aural 3D scanning system. The small handheld device produces a 3D image of the patient’s ear canal. Rather than providing a fxed image, it shows the changes that take place in the shape of the canal as the patient moves or swallows, and a lot of other data about the ear canal wall that manufacturers can use to improve the fit and design of in-ear devices. It can also beused by hearing device makers to understand the human ear better. Lantos’ device is likely to be available commercially sometime this year.



Inside: The Lantos scanner uses a fiberscopeenclosed in a conforming membrane, which is inserted into the ear canal. The conforming membrane is then filled with an asorbing medium, causing the membrane to expand and conform to the shape of the ear canal. The fiberscope then retrcts to generate a dynamic, 3D image of the ear canal in real time. The entire scan takes less than 60 seconds, after which the images are processed.

The Lantos scanner is based on a new technology called ‘emission re-absorption laser-induced fluorescence’(ERLIF), developed by Dr Douglas Hart at the Massachusetts Institute of Technology. Using the intensity measurement of two different wavelength bands of fluorescent light as they travel through an absorbing medium, ERLIF generates a highly-accurate 3D map. The medium selectively absorbs one wavelength band over the other. Thus the intensity  ratio of the two wavelengths as they travel through the medium can be measured using a standard camera.

Turn your iPhone into a bike trainer

Wahoo Fitness’ KICKR is a super trainer for cyclists. Using an application running on your iPhone and the wireless-enabled power trainer device, you can stay indoors and practice as if you were on the ground. The KICKR power trainer allows cyclists and triathletes to set the resistance and ride the bike while accurately measuring power, heart rate, speed and other parameters. Users can increase or decrease the resistance and simulate real-world conditions. They can also structure interval workouts. These adjustments occur almost instantaneously, so the user can go from gradients to flatland, and then steep slopes again, almost immediately. An application called Kinomap also lets you choose from various cycling tracks and eco-locations, to simulate the environment automatically.



Inside: KICKR power trainer uses a wheel-off design and super fly-wheel that produce a realistic road feel and work very silently. It measures power at the hub, giving consistent and accurate readings. The trainer includes an internal thermocouple to self-calibrate the strain gauge based on temperature variations. The resistance is driven by your iPhone or tablet during the ride and you can go from a 15 per cent gradient to a downhill run immediately. There are ten built-in resistance levels as well as a full manual mode that lets you stay in control.

The device can dual-broadcast the power and speed on ANT+ and Bluetooth Smart/Bluetooth 4.0 simultaneously. This means it is compatible with almost all current ANT+ power meter head units like the Garmin FR310XT/FR910XT/Edge 500/Edge 705/Edge 800, CycleOps Joule units, Timex global trainer and Magellan switch. What is more, the power trainer works on a completely free and open platform. So anyone with programming skills can create an application for it.

Neck-loop, audio-streamer for hearing-aid users

ClearSounds’ Quattro XS is an amplifie, Bluetooth neck-loop with advanced audio distribution profile (2DP). Perfect for hearing-aid users, it ensures that they hear perfectly in any environment. Transmission of sound from a Bluetooth-enabled mobile phone, directly through the T-coil of a hearing aid, reduces or eliminates interference between cellular phones and hearing aids or cochlear processors. It also tries to shut off background noise to a large extent. The device provides voice-controls for volume, amplification, dialling, etc.



Inside: Quattro XS features a binaural design. It includes an amplifierand removable Bluetooth microphone, as well as a user-friendly noise-cancelling neck-loop. A push-button slider is used to cinch the neck-loop for closer microphone placement. The device uses a universal micro-USB for fast charging and includes an attachable Bluetooth mini-microphone transmitter, intercom features, talking caller ID, and sophisticated profilesignal handling between the Bluetooth device and neck-loop signal interface. The headset jack accommodates audio headsets for non-T-coil use. Quattro offers 30dB adjustable amplification,and supports various profilesincluding hands-free, headset, A2DP and audio/video remote control profile.It is compatible with standard Bluetooth Version 2.1 + EDR devices, and has a range of 9 metres (30 feet). It uses a Lithium-Ion battery that offers a talk time of up to three hours and standby time of five days. It can be charged through USB cable,car adaptor or AC adaptor, all of which are included in the package.

Control battery-powered devices wirelessly

Power management solutions are all the rage. We keep hearing about controllers for air-conditioners, lighting systems, computers and so on. But what about smaller, battery-powered devices? Is it possible to turn off your radio through your mobile phone? Yes, Tethercell, an innovative product developed by Trey Madhyastha and Kellan O’Connor, veterans of the aerospace industry, lets you control the gadget you want. Just remove one of the AA-size batteries from the gadget and replace it with a Tethercell adaptor, which is a little app-enabled device with the dimensions of an AA-size battery. You can now remotely control the gadget through an app running on your iOS or Android device. Tethercell will be available commercially from June 2013.



Inside: Tethercell contains a lot of cutting-edge electronics based upon the TI CC2540 microcontroller. It also contains a current-sensing op-amp comparator, temperature sensor, n-channel MOSFET (capable of switching up to 5A), 1.5-3V boost converter and embedded 8051 microcontroller. The device is powered by a single AAA-size battery. Powering the on-board Bluetooth radio consumes just around 20 mA of current. However, the radio operates on a low-duty cycle, and spends most of its time in ‘sleep mode.’ In cases where Tethercell is used merely for switching on or off devices, it will be able to run for approximately six to twelve months on a single AAA-size battery. However, when it is configure to do more tasks and the host device draws more power, the battery might need replacement earlier. Tethercell utilises Bluetooth 4.0—the new low-power Bluetooth protocol that is expected to play a huge role in the Internet of Things. It has a range of around 18 metres (60 feet) indoors and 30 metres (100 feet) in open grounds.

Users will be able to tailor the behaviour of their Tethercells using the Tetherboard app with simple iOS-style app controls. An app developer kit can also be downloaded for free to build your own applications. The device also takes care of your privacy by including password protection.



Long before Fukushima, energy saving was a watchword. Efficient use of energy reduces the number of power stations. The conventional filamentlamps are problematic because of their low efficiency On the other hand, energy-saving CFL lamps too are not without problems due to their mercury content. For this reason, advances in light-intensive white LEDs are welcome. These offer an additional advantage—long life. With proper cooling, LED lamps have a life expectancy 50 times greater than filamentlamps. However, these might Continue reading


A teenager specializing in DIY lasers has apparently made his own version of a functional Star Wars lightsaber. In a video demonstration, he uses the device to light things on fire — paper, a match, even a ping-pong ball.


DIY laser enthusiast Drake Anthony describes himself as a teenager in Eureka, Illinois, who has been building lasers and electronics since he was 12. Online he goes by the name Styropyro and recently showed off his homemade lightsaber. Anthony described the parts as a 9 mm 450 nm laser diode from a DLP projector — the digital light processing kind you see in classrooms — and two 18650 lithium ion batteries usually found in laptops.

He measures the output as an “insane 3W” Continue reading


Quadrotor drones are doing a lot these days: they’re helping to save the elephants, rescue drowning victims. While these important duties naturally suggest a certain level of independence, the drones aren’t entirely autonomous because they still require human pilots to control their maneuvers.


They have proposed a quadrotor drone that uses artificially intelligent algorithms and depth motion-tracking cameras to follow a person from a safe distance and/or film the encounter. One method for doing so would involve the drone tracking a specific graphic on a user’s t-shirt.

One of Pet Drone’s main applications could be for BASE jumpers and other extreme athletes who want to film stunts that are out of range of human controlled drones. But that’s not all. Continue reading


3-d-printing-1Imagine that you’ve decided to organize your closet, but instead of measuring containers at a store to make sure they will work, you just go to your office, enter the measurements you want your containers to be, and print them out right there. Now imagine that you have to build a diorama of a famous Civil War battle for a project at school, and you use that same printer to construct all the soldiers, cannons and trees in perfect detail.

This technology may be closer than you think thanks to 3-D printing. 3-D printing is making it easier and faster to produce complex objects with multiple moving parts and intricate design, and soon it will be affordable enough to have at home.

Source : How Stuff Works

Continue reading



It seems like everyone and their uncle is working on a better way to get more energy out of photovoltaic solar cells, from using quantum dots to fiber optics. Now a Swiss company has decided on a brute-force method: hit a photovoltaic cell with the equivalent of 2,000 suns.

Airlight Energy, partnering with IBM Research, ETH Zurich, and Switzerland’s Interstate University of Applied Sciences, is developing a way to use parabolic reflectors to concentrate sunlight onto a set of solar cells, each only a half inch on a side.

It’s called a High Concentration PhotoVoltaic Thermal (HCPVT) system and so far, the test plant is capable of generating 25 kiloWatts of electricity.

The parabolic dish tracks the sun as it moves across the sky, so it always gets the maximum amount of light. As a result, the solar cell chips receive 2,000 times as much light energy as they normally would. Even though they’re small, each cell pumps out up to 250 Watts, and there are hundreds of them.

Photovoltaic panels, though, start losing their efficiency if they get too hot — to say nothing of melting. To keep the chips cool, a network of tiny tubes carries water between and around them. The water reaches temperatures of about 194 degrees, which can be used to heat water in a building or to heat salty water, which is passed through a membrane that removes the salt to make the water drinkable.

The photovoltaic plant operates at 30 percent efficiency, much higher than the less than 20 percent one might expect from a typical roof-mounted setup. And a parabolic dish of about one square yard would be able to generate about two kilowatt-hours per day and purify seven to nine gallons of salt water.

Right now there are several prototypes being built, with one being tested in Switzerland. Airlight said in a press release that they envision this kind of solar power in countries where there’s lots of sun but little fresh water.



Robonaut2 surpasses previous dexterous humanoid robots in strength, yet it is safe enough to work side-by-side with humans. It is able to lift, not just hold, this 20-pound weight (about four times heavier than what other dexterous robots can handle) both near and away from its body.

3 Continue reading



What Is Robonaut?

Two Robonaut models hold tools


Robonaut can use tools designed to be used by astronauts on the space station. Image Credit: NASA

Robonaut is a NASA robot. Engineers designed Robonaut to be humanoid, which means it is built to look like a person. This makes it easier for Robonaut to do the same jobs as a person. Robonaut could help with anything from working on the International Space Station to exploring other worlds. A Robonaut is currently aboard the International Space Station. Continue reading




TouchMagix is a combination of hardware and software that makes any projection surface, be it a wall or floor, or even an LCD screen, react to your touch and body gestures

A car game is projected on a wall remote-controlled by human movement. The car runs faster and smoother on collecting ‘Castrol’ fuel packs. Whether you are a gaming freak or not, nearly every passerby would give the game a shot, with many even taking multiple attempts to collect more oil packs to finish first.

At the launch of their new product range, Castrol used this fun and interactive medium, called TouchMagix, to draw and engage crowds of all ages with their brand. TouchMagix, developed by Pune-based startup TouchMagix, makes any projection surface, be it a wall or floor, or even an LCD screen, react to your body gestures or touch.

TouchMagix hardware comprises a high-end PC, a projector and its proprietary TouchMagix sensor. Continue reading


Injectable Electronics Light Up A Brain

Making electronic implants for the body is hard to do: tissue is delicate and stiff components can irritate it. Then there’s getting those implants into the relevant organ without invasive surgery.

To help solve these problems, John A. Rogers, a materials science professor at the University of Illinois, and Michael Bruchas, an anesthesiologist at Washington University in St. Louis, built an electronic LED device so tiny it can be injected into delicate tissue, such as in the brain, without harming it. The experiment appears in this week’s issue of the journal Science.

Rogers told Discovery News that brain tissue is not only fragile, it also tends to move around because brains are suspended in fluid, and that creates problems when one tries to put relatively stiff, rigid electronics or fiber optics in place.

To get around this the researchers put together an extremely small circuit board with Continue reading


Photo by Best DSC!

“Joel, this is Marty Cooper, I’d like you to know that I’m calling you from a cellular phone.” Exactly 40 years ago, on April 3, 1973, Motorola engineer Martin Cooper placed this call — the first ever on a cell phone — to Joel Engel, his rival at AT&T’s Bell Labs.

Cooper, now 85, made history in downtown Manhattan using the bulky prototype he had developed. Continue reading



Side walks, Foot paths, Dance Clubs, Floors and many other places where more Humans move around a lot. We walk, jump and dance. So why not use all that kinetic energy? Via piezoelectric devices, that’s now possible. Continue reading

320-Gigapixel Photo Shatters Record

320-Gigapixel Photo Shatters Record

Click the photo to view the actual photograph

In the last Post, I showed you an interactive, high-res image taken from the top of the world’s tallest building, the Burj Khalifa in Dubai. That image was huge — 2.5 gigapixels. Now there’s an even bigger gigapixel image, a 360-degree panoramic photo of London that comes in at a record 320-gigapixel resolution.

The panorama was created by installing four cameras around the outside platform of the 29th floor of the British Telecommunications tower. The cameras were then attached to robotic mounts timed to take four frames a second. It took three days to snap the images and three months for a computer program to stitch together all 48,640 individual shots.

Interact with Panoramic Pic from Tallest Building

Interact with Panoramic Pic from Tallest Building

Click the Image to view the actual photograph.

You may never get to Dubai and stand atop of the world’s tallest building, the 2,717-foot-tall Burj Khalifa. But this interactive photograph may be the next best thing. It was created to celebrate the annual Hamdan Bin Mohammed Bin Rashid Al Maktoum Photography Award (HIPA), which awards prizes totaling $389,000. The grand prize awarded is $120,000.

The interactive image was taken by Dubai-based photographer Gerald Donovan, who not only went to the top floor, Continue reading

Get A Pen To Draw In 3D For $75

Get A Pen To Draw In 3D For $75

Click the Photo to view the working video of the 3D Pen.

A pen that uses plastic for ink allows you to draw in three dimensions. The 3Doodler, invented by Peter Dilworth and Maxwell Bogue, gives people a freer hand in creating sculptures and brings computer-aided design software front and center.

You hold it just like a regular pen, but instead of building a shape layer by layer, as a 3-D printer does, this pen it extrudes the plastic into the air.

The plastic is soft when it is extruded, but it hardens quickly enough that it can form a stable structure. It’s the same kind of plastic (called ABS) that is used in 3-D printers. The pen is hooked up to the supply of plastic, which comes in the form of long, thin strings, so it has a kind of tether on it. It doesn’t need a computer or any software to work. Continue reading

Future Soldiers to Communicate Via Their Shirts

Future Soldiers to Communicate Via Their Shirts

As our communications devices migrate from being things that we carry to things that we wear, the U.S. military seems poised to embrace this change with technology that could be integrated into the uniforms of soldiers of the future.

Although the fiber optic-like threads could eventually transmit information, the fibers do not have any transistors, processors or circuitry.

“These are new kinds of fibers that are themselves devices,”

Joannopoulos says the millimeter-thick fibers are too thick for a uniform and that he wants to scale them down to 100 microns, which he and his team at the Army’s Soldier Systems Center hope to achieve over the next 10 years as they refine and design the concept further.

“Your uniform would transit that information. You wouldn’t be talking, it would transmit information: who you are, what time you went down, where the wounds are, what is the estimated severity of the wound, et cetera,”. “The idea with these fibers is that eventually, we’d like to enable full-body sensing for the soldier.”

Electronic Telekinesis from Temporary Tattoo

Electronic Telekinesis from Temporary Tattoo

Electronic devices are getting smaller, thinner and more flexible — taking them into areas other electronics can’t go. One place is the mind. Electrical engineer Todd Coleman at the University of California at San Diego, for example, is using super-thin flexible electronic “tattoos” to read brain wave activity in a non-invasive way and use that data to control machines.

Devices, which about the width of a human hair, stick to a person’s forehead and detect electrical signals from the brain. In previous studies, his team found that study participants could remotely fly airplanes around a room using their mind. These people were not wearing the thin tattoo-like stickers but wearing electrode caps that pick up brain wave activity. But if such control can come from the cap, it could be possible to shrink it down to the stick-on tattoo level.

The small, flexible devices could also be put on the throat and behave as subvocal microphones through which people could communicate silently and wirelessly and perhaps improve speech recognition in smartphones.

“We’ve demonstrated our sensors can pick up the electrical signals of muscle movements in the throat so that people can communicate just with thought,”

Is Apple Developing a Smart Watch?

Is Apple Developing a Smart Watch?

Apple is already seeking patents to develop smart shoes and apps that could turn strangers into walking ATMs, so news that the company may be developing a smart watch should come as no surprise.

Citing sources inside Apple’s Cupertino headquarters, a recent story in the New York Times confirmed Apple is working on a wristwatch made of curved glass.

Two sources said that the watch would operate on Apple’s iOS platform and would distinguish itself from the competition due to the company’s knowledge about the curved glass that will be used.

“You can certainly make it wrap around a cylindrical object and that could be someone’s wrist,”. “Right now, if I tried to make something that looked like a watch, that could be done using this flexible glass.”


Li-ion Battery Charges in 10 Minutes

Li-ion Battery Charges in 10 Minutes

Lithium batteries, which are used for everything from electronics to vehicles, take time to recharge, usually in the realm of hours. But researchers at University of Southern California have developed a new lithium-ion battery that can recharge within 10 minutes and hold three times the amount of energy as other batteries.

Experimented with porous silicon nano-wires that helped improve the performance of lithium-ion batteries.

And although the batteries functioned well, the nano-wires were difficult to manufacture in mass quantities.

To solve the problem, Zhou’s team took commercially available nano-particles of silicon spheres and etched them with the same pores as the nano-wires. The particles improved battery performance — allowing a battery to be charged in 10 minutes — and what’s more, can be mass produced. Future electronics and electric vehicles could have such batteries in just two or three years.


Theme by Anders NorenUp ↑